Распалубочная прочность бетона СНИП

Содержание

Пособие к СНиП 2.03.01-84 Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры

Распалубочная прочность бетона СНИП

ЦЕНТРАЛЬНЫЙ                                                ОРДЕНА   ТРУДОВОГО НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ                 КРАСНОГО ЗНАМЕНИ И ПРОЕКТНО-ЭКСПЕРИМЕНТАЛЬНЫЙ       НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПРОМЫШЛЕННЫХ                    ИНСТИТУТ БЕТОНА ЗДАНИЙ И СООРУЖЕНИЙ                             И ЖЕЛЕЗОБЕТОНА

(ЦНИИпромзданий) ГОССТРОЯ СССР             (НИИЖБ) ГОССТРОЯ СССР

ПОСОБИЕ

по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов

без предварительного напряжения

арматуры

(к СНиП 2.03.01-84)

Утверждено

приказом ЦНИИпромзданий

Госстроя СССР

от 30 ноября 1984 г. № 106а

Рекомендовано к изданию решением секции несущ их конструкций науч но-технического совета ЦНИИпромзданий Госстроя СССР.

Содерж ит требования СНиП 2.03.01-84 к проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предваритель ного напряжения арматуры; положен ия, детали зиру ющие эти требова ния; приближен ные способы и примеры расчета, а также рекоме ндации, необходимые для проектирования.

Для инже неров -проектировщиков, а также студентов строитель ных вузов.

Табл. 59, ил. 134.

При поль зовании Пособием следует учитывать утвержденные изменения строительных норм и правил и государс твенных стандартов, публикуемые в журнале „Бюллетень строи ­т ельной техники”, „Сборнике изменений к строительным нормам и пра вилам” Госстроя СССР и и нформацион ном указате ле „Государ ственные ста ндарты СССР” Госс тандарта.

ПРЕДИСЛОВИЕ

Пособие содержит полож ения по проектиро­ванию бетонных и железобетонных конструкций промышленных и гражданских зданий и сооружений из тяжелых и легких бетонов, выполняемых без предварительного напряже ния арматуры.

В Пособии приведены требования СНиП 2.03.01 -84 к проектированию упомянутых бетонных и желе ­зобетонных конструкций; положения, детал изирую­щие эти требования; приближенные способы расче­та, а также дополнительные рекомендации, необхо­димые для проектирования. Номера пунктов, таблиц и приложений СНиП 2.03.01-84 указаны в скобках.

В каждом разделе Пособия даны примеры рас­чета элементов наиболее типичных случаев, встре­чающихся в практике проектирования.

Материалы для проектирования редко встре­чающихся ненапрягаемых конструкций (например, данные для арматуры, упрочненной вытяжкой; расчет элементов с арматурой классов A-IV, A-V и A-VI , имеющей условный предел текучести; расчет элемен тов на выносливость и т.п.) в настоящее Пособие не включены, а приведены в „Пособии по проектированию предварительно напряженных же­лезобетонных конструкций из тяжелых и легких бетонов” (М., ЦИТП Госстроя СССР, 1986) .

В Пособии не приведены особенности проектиро­вания конструкций статически неопределимых и сборно-монолитных, с жесткой арматурой, а также некоторых сооружений (труб, силосов и др.), в частности не рассмотрены вопросы, связанные с определением усилий в этих конструкциях. Эти вопросы освещаются в соответствующих Пособиях и Рекомендациях.

Единицы физических величин, приведенные в Пособии, соответствуют „Перечню единиц физи­ческих величин, подлежащих применению в строи­тельстве”.

При этом силы выражаются в ньютонах (Н) или в килоньютонах (кН) ; линейные размеры — в мм (в основном для сечений элементов) или в м (для элементов или их участков) ; напряжения, сопротивления, модули упругости — в мегапаска лях (МПа); распределенные нагрузки и усилия — в кН/м или Н/мм.

Поскольку 1 МПа = 1 Н/мм2 , при использовании в примерах расчета формул, включающих величины в МПа (на пряжения, сопро­тивления и т. п.), остальные величины приводятся только в Н и мм (мм 2 ).

В таблицах нормативные и расчетные сопротив­ления и модули упругости материалов приведены в МПа и в кгс/см2 .

В Пособии использованы буквенные обозначения и индексы к ним в соответствии с СТ СЭВ 1565-79. Основные буквенные обозначения применяемых ве­личин приведены в прил. 5.

Поскольку для индек­сов используются только буквы латинского алфа­вита, соответствующие этим индексам поясняющие слова приняты не русские, а, как правило, англий­ские. В связи с этим в прил.

5 приведены также все примененные индексы и соответствующие им рус­ские поясняющие слова.

Пособие     разработано     ЦНИИпромзданий Госстроя СССР (инженеры Б.Ф. Васильев, И.К. Ни­китин, А.Г. Королькова; канд. техн. наук Л.Л Лемыш ) и НИИЖБ Госстроя СССР (доктора техн. наук А.А. Гвозд ев, Ю.П. Гуща, А.С. Залесов; кан­дидаты техн. наук Е.А. Чистяков, П.К. Руллэ, Н.М. Мулин,     Л.Н.

Зайцев,     В.В. Фигаровский, Н.Г. Матков, Н.И. Ка тин, А.М. Фридман, Н.А. Корнев, Т.А.Кузмич ) с участием НИЛ ФХММ и ТП Главмоспромстройматериалов (д-р техн. наук С. Ю. Цейтлин; кандидаты техн. наук Э.Г. Р атц , Я.М. Якобсо н; инж. Е.З. Ерманок), К ГБ Мосоргстройматериалов (канд. техн. наук B.C.

Щукин; инженеры В.Л. Айзинсон, Е.М. Травкин, Б.И. Фельцман ) , ДИСИ Минвуза УССР (д-р техн. наук В.М. Ба­ташов), Гипростроммаша Минстройдормаша СССР (инженеры Л.А. Волков, М.А. Соломович, Т.П. Заневская) и ЦНИИЭП жилища Госстроя СССР (канд. техн. наук Н.С. Стронгин; инж. Е.М.

  Сурманидзе ).

Отзывы и    замечания просим присылать по адресам:

127238, Москва, Дмитровское шоссе, 46, ЦНИИпромзданий;

109389, Москва, 2-я Институтская, 6, НИИЖБ.

1. ОБЩИЕ РЕКОМЕНДАЦИИ

1.1. Рекомендации настоящего Пособия распро­страняются на проектирование бетонных и железо­бетонных конструкций, выполняемых бе з предва­рительного на пряжения арматуры из тяжелого, мел­козернистого и легкого бетонов и эксплуатируе­мых при систематическом воздействии температур не выше 50 °С и не ниже минус 70 °С.

Примечания : 1. Рекомендации Пособия не распро­стра няются на проектирование бето нных и железобето н­ных конструк ций гидротехнических сооружений, мостов, тра нспортных тоннелей, труб под насыпями, покрытий автомобильных дорог и аэродромов.

2. Термины „ бетоны тяжелые”, „ бетоны мелкозернис­тые” и „ бетоны легкие” применяются в соответствии с ГОСТ 25192-82.

Легкие б етоны могут быть плотной и поризованной структур, поэтому в Пособии для краткости используются термины „ легкий бетон” — для обозначения легких бетонов плотной структуры и „ поризованный бетон” — для обо­значения легких бетонов поризованной структуры с меж­зерновыми пустотами в уплотненной бетонной смеси свыше 6 %.

1.2. Вид легких и поризованных бетонов, а также областьих применения приведены в прил. 1 .

1.3. Бетонные и железобетонные конструкции зданий и сооружений, предназначенные д ля работы в условиях агрессивной среды и повышенной влаж­ности, рекомендуется проектировать с учетом требований СНиП 2.03.11 -85.

1.4 (1.4). Элементы сборных конструкций долж­ны отвечать условиям меха низированного изготов­ления на специализированных предприятиях.

Целесообразно укрупнять элементы сборных конструкций, насколько это позволяют грузо­под ъемность монтажных механизмов, условия изго­товления и транспортирования.

1. 5(1.5). Для монолитных конструкций следует предусматривать унифицированные размеры, позво­ляющие применять инвентарную опалубку, а также укрупненные пространственные арматурные кар­касы.

1.6(1.6). В сборных конструкциях особое вни­мание должно быть обращено на прочн ость и дол­говечность соединений.

Конструкции узлов и соединений элементов долж ны обеспечивать с помощью различ ных кон­структивных и технологических мероприятий надежную передачу усилий, прочность самих эле­ментов в зоне стыка, а также связь дополнительно уложенного бетона в стыке с бетоном конструкции.

1.7 (1.7). Бетонные элементы применяются:

а) преимущественно в конструкциях, работаю­щих на сжатие при малых эксцентриситетах продольной силы, не превышающих значений, ука­занных в п. 3.4;

б) в отдельных случаях в конструкциях, работаю­щих на сжатие с большими эксцентриситетами, а также в изгибаемых конструкциях, когда их раз­ру шение не представляет непосредственной опас­ности для жизни людей и сохранности оборудова­ния (элементы, лежащие на сплошном основании, и др.).

Примечание. Конструкции рассматриваю тся как бетонные, если их прочность в стадии эксплуатации обес­печивается одним бетоном.

1.8 (1.8).

Источник: https://znaytovar.ru/gost/2/Posobie_k_SNiP_2030184_Posobie2.html

Распалубка фундамента. Минимальная прочность бетона при распалубке

Распалубочная прочность бетона СНИП

Вопрос когда снимать опалубку мучает многих начинающих строителей. Некоторые советчики предлагают подождать 28 дней, некоторые бывалые строители с богатым практическим опытом говорят, что можно снимать деревянную рубашку и даже укладывать плиты перекрытия и на вторые сутки. Истина, как всегда, где-то посередине.

В решении этой задачи многое зависит:

  • от типа конструкции;
  • от природных условий, в первую очередь — температуры и влажности воздуха;
  • наличия свободного времени, того, сколько дней вы готовы ждать.

Основная задача, возложенная на опалубку — поддержание формы раствора до его затвердевания и набора прочности. Она несет нагрузку, которую создает масса фундамента до того, пока ее не сможет нести сама опора.

И чтобы знать, когда снимать опалубку, следует уметь рассчитывать прочность бетона.

При демонтаже нельзя использовать подъемную технику или ударные инструменты. Это может повредить еще не окрепший в полной мере цементный раствор. Чтобы точно знать, когда можно приступать к работе, лучше обратиться за справкой к нормативным документам.

Нормативные сроки

Если навести справки, то окажется, что до недавнего времени ответ на вопрос, когда допустимо снимать опалубку, содержался в СНиП 3.03.01-87. Но постановлением Госстроя РФ №42 от 22 мая 2003 года некоторые пункты документа, регулирующие минимальные сроки распалубки, были признаны не действующими. При этом новые нормы разработаны не были.

Остается выбор: либо следовать устаревшим нормам, либо ориентироваться на личный опыт или советы друзей. Все же приведем указанные в документе данные, на которые можно ориентироваться в любом случае.

Тип конструкции Минимальная допустимая прочность для распалубки
Вертикальные плоскости0,2-0,3 МПа
Горизонтальная или наклонная плоскость с длиной пролета до 6 мНе менее 70% от расчетной прочности бетона
Горизонтальная или наклонная плоскость с длиной пролета более 6 мНе менее 80% от расчетной прочности бетона
Железобетон с пористым наполнителем3,5 МПа, но не меньше 50% расчетной прочности бетона

Дело за малым — определить текущую прочность нашего бетона. Можно сделать это экспериментальным путем при помощи специальных приборов. Снимать опалубку со стенок фундамента для этого вовсе не обязательно, поскольку имеется верхняя открытая плоскость. Либо сделать приблизительный расчет, исходя из температуры воздуха во время затвердевания.

Предполагается, что используется обычный цементный раствор, который набирает расчетную прочность, когда простоит 28 дней при среднесуточной температуре в 20°С. Процент от марочной прочности можно определить по таблице:

Время твердения, сутки Процент прочности от расчетной при температуре, °С
05102030
159122335
21219254055
31827375065
52838506580
73548587590
1450627290100
28657782100

На диаграмме ниже размещены данные в более удобном формате, рекомендуем ознакомиться.

Таким образом, за сутки конструкция достигнет половины своей прочности только в том случае, если температура держалась около 30°. А ждать более 30 дней придется лишь тогда, когда температура воздуха уже опустилась до нуля. Сколько придется ждать вам, прежде чем снимать деревянную обшивку, зависит от погоды.

Важность этих сроков зависит от конструкции. Ленточный или плитный тип конструкции фундамента можно «раздеть» раньше, если при этом не планируется его активно использовать — ходить по нему, нагружать плитами перекрытия и пр.

Более требовательные столбчатые опоры, потому что у них высота значительно превышает ширину и глубину, соответственно велик риск, что нижний слой разрушится под весом верхней части.

Еще более аккуратным следует быть с повышенным ростверком, который соединяет опоры, но сам висит в воздухе. Если снять опалубку раньше срока, когда цементный раствор еще недостаточно прочен, то высок риск образования трещин, что ставит крест на нормальной эксплуатации опорного каркаса.

Смотрите нашу видео-подборку по теме:

к оглавлению ↑

Чем чревато преждевременное снятие?

Многие практикующие строители снимают опалубку гораздо раньше того времени, который определен в нормах. И часто это обходится без последствий. Но все же будет не лишним знать возможные проблемы, которые можно спровоцировать таким поступком.

  • Сколы углов.
  • Образование трещин.
  • Нарушение геометрии фундамента — стирание плоскостей.

Некоторые ничем серьезным не грозят, некоторые последствия могут привести опору в полную негодность. Ведь, как правило, опалубку снимают не просто так, а когда намерены продолжать строительство, то есть активно передвигаться по поверхности фундамента, укладывать кирпич или плиты перекрытия. Сколько опора сможет выдержать — предположить сложно.

Продолжать постройку до того, как тело фундамента наберет минимально необходимую прочность, категорически нельзя.

к оглавлению ↑

Дополнительная польза опалубки

Есть еще одна причина, из-за которой лучше не спешить снимать опалубку. Дерево или металл защищают верхние слои бетона от быстрого высыхания и больших перепадов температуры.

Если нет необходимости срочно продолжать работы, то лучше оставить постоять опору дома в деревянной рубашке на несколько лишних дней. Особенно это актуально летом в большую жару.

Особенно хорошо сохраняет влагу дерево, когда оно оббито полиэтиленовой пленкой с внутренней стороны. Наличие такого перекрытия снижает потери влаги до минимума.

Несколько дней пребывания бетона в такой рубашке особенно при высокой температуре позволит значительно увеличить прочность фундамента.

Смотрите нашу видео-подборку по распалубке:

proffu.ru

Распалубочная прочность бетона – это… Что такое Распалубочная прочность бетона?

Распалубочная прочность бетона – значение прочности бетона, допускающее распалубку конструкций, которые при этом могут воспринимать только определенную нагрузку.

[Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева, Москва, 2007 г. 110 стр.]

Рубрика термина: Свойства бетона

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. – Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru

Мдс 12-14.2003 стр.4 11.2.8

11.2.8 Каким требованиям должна отвечать эстакада, оборудованная для подачи бетонной смеси автосамосвалами?

Источник: https://sevparitet.ru/raznoe/minimalnaya-prochnost-betona-pri-raspalubke.html

Распалубочная прочность бетона СНИП

Распалубочная прочность бетона СНИП

Прочность бетона является важнейшей характеристикой, от которой зависят эксплуатационные параметры материала.

Под прочностью подразумевают способность бетона противостоять внешним механическим силам и агрессивным средам.

Особенно актуальны способы определения этой величины методами неразрушающего контроля: механическими или ультразвуковым.

Правила испытания прочности бетона на сжатие, растяжение и изгиб определяются ГОСТ 18105-86. Одной из характеристик прочности бетона является коэффициент вариации (Vm), который характеризует однородность смеси.

По ГОСТ 10180—67 предел прочности бетона при сжатии определяется при сжатии контрольных кубов с размерами ребер 20 см в 28-суточном возрасте — это так называемая кубиковая прочность. Призменная прочность определяется как  0,75 кубиковой прочности для класса бетона В25 и выше и 0,8 для класса бетона ниже В25

Помимо ГОСТов, требования к расчётной прочности бетона задаются в СНиПах.

Так, например, минимальная распалубочная прочность бетона незагруженных горизонтальных конструкций при пролете до 6 метров должна составлять не менее 70% проектной прочности, а свыше 6 метров – 80% проектной прочности бетона.

Механические неразрушающие методы определения прочности бетона

Неразрушающие способы бетона на сжатие основываются на косвенных характеристиках показаний приборов.

Испытания прочности бетона проводятся с помощью основных методов: упругого отскока, ударного импульса, отрыва, скалывания, пластической деформации, отрыва со скалыванием.

Рассмотрим виды испытательных приборов механического принципа действия. Таким способом прочность бетона определяется глубиной внедрения рабочего органа прибора в поверхностный слой материала.

Принцип действия молотка Физделя основан на использовании пластических деформаций строительных материалов. Удар молотка по поверхности бетона образует лунку, диаметр которой и характеризует прочность материала.

Место, на которое наносятся опечатки, должно быть очищено от штукатурки, шпатлевки, окрасочного слоя.

Испытания проводятся локтевыми ударами средней силы по 10-12 раз на каждом участке конструкции с расстоянием между отпечатками не менее 3 см.

Диаметр полученных лунок измеряется с помощью штангенциркуля по двум перпендикулярным направлениям с точностью до десятой миллиметра.

Прочность бетона определяется с помощью среднего диаметра отпечатка и тарировочной кривой. Тарировочная кривая строится на сравнении полученных диаметров отпечатков и результатов лабораторных исследований на образцах, взятых из конструкции или изготовленных по технологиям, аналогичных примененным.

На свойствах пластической деформации основан и принцип действия молотка Кашкарова.

Различие между этими приборами заключается в наличии между молотком и завальцованным шариком отверстия, в которое введен контрольный стержень. Удар молотка Кашкарова приводит к образованию двух отпечатков.

Одного — на поверхности обследуемой конструкции, второго — на эталонном стержне.

Соотношение диаметров получаемых отпечатков зависит от прочности исследуемого материала и контрольного стержня и не зависит от скорости и силы удара молотка. По среднему соотношению диаметров двух отпечатков с помощью тарировочного графика устанавливают прочность бетона.

Пистолеты ЦНИИСКа, Борового, молоток Шмидта, склерометр КМ, оснащенный стержневым ударником, работают, основываясь на принципе упругого отскока.

Измерения величины отскока бойка проводятся при постоянной величине кинетической энергии металлической пружины и фиксируются указателем на шкале прибора.

Взвод и спуск бойка происходят автоматически при соприкосновении ударника и испытуемой поверхности.

Склерометр КМ имеет специальный боек определенной массы, который с помощью предварительно напряженной пружины с заданной жесткостью ударяет по металлическому ударнику, прижатому другим концом к обследуемой поверхности.

Метод испытания на отрыв со скалыванием позволяет определить прочность бетона в теле бетонного элемента. Участки для испытания подбираются таким образом, чтобы в этой зоне не было арматуры.

Для установки второго и третьего типов анкерных устройств предварительно подготавливают шпуры, высверливая их в бетоне.

Ультразвуковой метод измерения прочности бетона

Принцип действия приборов ультразвукового контроля основывается на связи, которая существует между скоростью распространения ультразвуковых волн в материале и его прочностью.

В зависимости от способа прозвучивания разделяют две градуировочные зависимости: «скорость распространения волн — прочность бетона», «время распространения ультразвуковых волн — прочность бетона».

Метод сквозного прозвучивания в поперечном направлении применяется для сборных линейных конструкций — балок, ригелей, колонн. Ультразвуковые преобразователи при таких испытаниях устанавливаются с двух противоположных сторон контролируемой конструкции.

Поверхностным прозвучиванием испытывают плоские, ребристые, многопустотные плиты перекрытия, стеновые панели. Волновой преобразователь устанавливается с одной стороны конструкции.

Для получения надежного акустического контакта между испытуемой конструкцией и рабочей поверхностью ультразвукового преобразователя используют вязкие контактные материалы типа солидола. Возможна установка «сухого контакта» с использованием конусных насадок и протекторов. Ультразвуковые преобразователи устанавливают на расстоянии не менее 3 см от края конструкции.

Приборы для ультразвукового контроля прочности состоят из электронного блока и датчиков. Датчики могут быть раздельными или объединенными для поверхностного прозвучивания.

Скорость распространения ультразвуковой волны в бетоне зависит от плотности и упругости материала, наличия в нем пустот и трещин, отрицательно влияющих на прочность и другие качественные характеристики. Следовательно, ультразвуковое прозвучивание предоставляет информацию о следующих параметрах:

  • однородности, прочности, модуле упругости и плотности;
  • наличии дефектов и особенностях их локализаций;
  • форме А-сигнала.

Прибор записывает и преобразует в визуальный сигнал принимаемые ультразвуковые волны. Оснащенность контрольного оборудования цифровыми и аналоговыми фильтрами позволяет оптимизировать соотношение сигнала и помех.

Методы разрушающего контроля прочности бетона

Каждый застройщик может выбирать самостоятельно методы неразрушающего контроля, но согласно существующим СНиПам разрушающий контроль является обязательным. Способов организации выполнения требований СНиПов существует несколько.

  • Контроль прочности бетона может проводиться на специально изготовленных образцах. Применяется этот метод при производстве сборных железобетонных конструкций и для выходного контроля БСГ (бетонной смеси готовой) на стройплощадке.
  • Прочность бетонов может контролироваться на образцах, которые были получены способами выпиливания и вырубывания из самой конструкции. Места взятия проб определяются с учетом снижения несущей способности в зависимости от напряженного состояния. Целесообразно, чтобы эти места указывались самими проектировщиками в проектной документации.
  • Испытания образцов, изготовленных на месте проведения работ в условиях, определенных конкретным технологическим регламентом. Однако укладка бетона в кубы для проведения последующих испытаний, его твердение и хранение значительно отличаются от реальных условий укладки, уплотнения и твердения рабочих бетонных смесей. Эти различия существенно снижают достоверность получаемых таким способом результатов.

Самостоятельное измерение прочности бетона

Профессиональные методы определения прочности бетона дороги и не всегда доступны. Существует способ самостоятельного проведения обследования на прочность бетонных конструкций.

Для испытаний потребуется молоток весом 400-800 г и зубило. По приставленному к поверхности бетона зубилу наносится удар средней силы. Далее определяется степень повреждения, нанесенного поверхностному слою.

Если зубило оставило лишь небольшую отметину, то бетон можно отнести к классу прочности В25. При наличии более значительной зазубрины бетон можно отнести к классам В15-В25.

Если зубило проникнет в тело конструкции на глубину менее 0,5 см, то образец можно отнести к классу В10, если более 1 см — к классу В5.

Класс или марка бетона по прочности — это основной показатель качества бетонной смеси, которые определяют среднюю прочность бетона. Например, средняя прочность бетона В30 (М400) составляет 393 кгс / см2.

Ориентировочно определить прочность бетона Rб в на 28 сутки в МПа можно по формуле Боломея-Скрамтаева, которая является основным законом прочности бетона.

Источник: https://betfundament.com/raspalubochnaya-prochnost-betona-snip/

Сп 435.1325800.2018 конструкции бетонные и железобетонные монолитные. правила производства и приемки работ, сп (свод правил) от 26 ноября 2018 года №435.1325800.2018

Распалубочная прочность бетона СНИП

СП435.1325800.2018

ОКС 91.200

Датавведения 2019-05-27

Предисловие

Сведения о сводеправил

1ИСПОЛНИТЕЛЬ – АО “НИЦ “Строительство” – Научно-исследовательский,проектно-конструкторский и технологический институт бетона ижелезобетона (НИИЖБ) им. А.А.Гвоздева

2ВНЕСЕН Техническим комитетом по стандартизации ТК 465″Строительство”

3ПОДГОТОВЛЕН к утверждению Департаментом градостроительнойдеятельности и архитектуры Министерства строительства ижилищно-коммунального хозяйства Российской Федерации (МинстройРоссии)

4УТВЕРЖДЕН приказом Министерствастроительства и жилищно-коммунального хозяйства РоссийскойФедерации от 26 ноября 2018 г. N 746/пр и введен в действие с27 мая 2019 г.

5ЗАРЕГИСТРИРОВАН Федеральным агентством по техническомурегулированию и метрологии (Росстандарт)

6ВВЕДЕН ВПЕРВЫЕ

В случае пересмотра(замены) или отмены настоящего свода правил соответствующееуведомление будет опубликовано в установленном порядке.Соответствующая информация, уведомление и тексты размещаются такжев информационной системе общего пользования – на официальном сайтеразработчика (Минстрой России) в сети Интернет

Введение

Настоящий свод правилразработан в соответствии с требованиями Федерального закона от 30 декабря 2009 г. N384-ФЗ “Технический регламент о безопасности зданий исооружений”.

Настоящий свод правилразработан авторским коллективом АО “НИЦ “Строительство” – НИИЖБим. А.А.Гвоздева (д-р техн. наук В.Ф.Степанова; канд.техн. наук М.И.Бруссер, канд. техн. наукС.С.Жоробаев, канд. техн. наук В.Н.Строцкий,С.Г.Зимин, А.В.Анцибор, С.Н.Захарчук).

1Область применения

1.1 Настоящий свод правилраспространяется на производство, контроль и приемку работ пристроительстве зданий и сооружений из монолитных бетонных ижелезобетонных конструкций с применением легкого, мелкозернистого итяжелого бетонов и фибробетона.

1.2 Свод правилустанавливает общие требования к бетонным смесям, бетонам,опалубкам и арматурным изделиям; к производству, контролю и приемкеопалубочных, арматурных и бетонных работ; приемке готовыхмонолитных бетонных и железобетонных конструкций.

2Нормативные ссылки

Внастоящем своде правил использованы нормативные ссылки на следующиедокументы:

ГОСТ 3282-74 Проволока стальнаянизкоуглеродистая общего назначения. Технические условия

ГОСТ 5802-86 Растворы строительные.Методы испытаний

ГОСТ 6727-80 Проволока изнизкоуглеродистой стали холоднотянутая для армированияжелезобетонных конструкций. Технические условия

ГОСТ 7473-2010 Смеси бетонные.Технические условия

ГОСТ 7566-94 Металлопродукция. Приемка,маркировка, упаковка, транспортирование и хранение

ГОСТ 8478-81 Сетки сварные дляжелезобетонных конструкций. Технические условия

ГОСТ 10060-2012 Бетоны. Методыопределения морозостойкости

ГОСТ 10178-85 Портландцемент ишлакопортландцемент. Технические условия

ГОСТ 10180-2012 Бетоны. Методыопределения прочности по контрольным образцам

ГОСТ 10181-2014 Смеси бетонные. Методыиспытаний

ГОСТ 10922-2012 Арматурные и закладныеизделия, их сварные, вязаные и механические соединения дляжелезобетонных конструкций. Общие технические условия

ГОСТ 12730.3-78 Бетоны. Метод определенияводопоглощения

ГОСТ 12730.5-84 Бетоны. Методыопределения водонепроницаемости

ГОСТ 13087-81 Бетоны. Методы определенияистираемости

ГОСТ 14098-2014 Соединения сварныеарматуры и закладных изделий железобетонных конструкций. Типы,конструкции и размеры

ГОСТ 15467-79 Управление качествомпродукции. Основные понятия. Термины и определения

ГОСТ 17624-2012 Бетоны. Ультразвуковойметод определения прочности

ГОСТ 18105-2010 Бетоны. Правила контроляи оценки прочности бетона

ГОСТ 22266-2013 Цементы сульфатостойкие.Технические условия

ГОСТ 22690-2015 Бетоны. Определениепрочности механическими методами неразрушающего контроля

ГОСТ 23279-2012 Сетки арматурные сварныедля железобетонных конструкций и изделий. Общие техническиеусловия

ГОСТ 23616-79 Система обеспеченияточности геометрических параметров в строительстве. Контрольточности

ГОСТ 23732-2011 Вода для бетонов истроительных растворов. Технические условия

ГОСТ 24211-2008 Добавки для бетонов истроительных растворов. Общие технические условия

ГОСТ 25820-2014 Бетоны легкие.Технические условия

ГОСТ 26633-2015 Бетоны тяжелые имелкозернистые. Технические условия

ГОСТ 27006-86 Бетоны. Правила подборасостава

ГОСТ 28570-90 Бетоны. Методы определенияпрочности по образцам, отобранным из конструкций

ГОСТ 30459-2008 Добавки для бетонов истроительных растворов. Определение и оценка эффективности

ГОСТ 30515-2013 Цементы. Общиетехнические условия

ГОСТ 31108-2016 Цементыобщестроительные. Технические условия

ГОСТ 31189-2015 Смеси сухиестроительные. Классификация

ГОСТ 31356-2007 Смеси сухие строительныена цементном вяжущем. Методы испытаний

ГОСТ 31357-2007 Смеси сухие строительныена цементном вяжущем. Общие технические условия

ГОСТ 31383-2008 Защита бетонных ижелезобетонных конструкций от коррозии. Методы испытаний

ГОСТ 31384-2017 Защита бетонных ижелезобетонных конструкций от коррозии. Общие техническиетребования

ГОСТ 31914-2012 Бетоны высокопрочныетяжелые и мелкозернистые для монолитных конструкций. Правилаконтроля и оценки качества

ГОСТ 31937-2011 Здания и сооружения.Правила обследования и мониторинга технического состояния

ГОСТ 31938-2012 Арматура композитнаяполимерная для армирования бетонных конструкций. Общие техническиеусловия

ГОСТ 34028-2016 Прокат арматурный дляжелезобетонных конструкций. Технические условия

ГОСТ 34278-2017 Соединения арматурымеханические для железобетонных конструкций. Техническиеусловия

ГОСТ 34329-2017 Опалубка. Общиетехнические условия

ГОСТISO/IEC 17000-2012 Оценка соответствия. Словарь и общиепринципы

ГОСТ Р 51872-2002 Документацияисполнительная геодезическая. Правила выполнения

ГОСТ Р 52086-2003 Опалубка. Термины иопределения

ГОСТ Р 52544-2006 Прокат арматурныйсвариваемый периодического профиля классов А500С и В500С дляармирования железобетонных конструкций. Технические условия

ГОСТ Р 52752-2007 Опалубка. Методыиспытаний

ГОСТ Р 52804-2007 Защита бетонных ижелезобетонных конструкций от коррозии. Методы испытаний

ГОСТ Р 55224-2012 Цементы длятранспортного строительства. Технические условия

ГОСТ Р 57997-2017 Арматурные и закладныеизделия сварные, соединения сварные арматуры и закладных изделийжелезобетонных конструкций. Общие технические условия

Источник: http://docs.cntd.ru/document/554818837

Снятие опалубки после бетонирования СНиП

Распалубочная прочность бетона СНИП

Полное застывание бетона часто применяемых марок (М150…М300) происходит за 4 недели.

В течение 28 суток монолит набирает 97—98% конструктивной прочности при нормальных условиях: температура воздуха — 20 ± 2 °С, относительная влажность близка к 100%.

Строительство можно возобновить раньше окончания периода затвердевания, но надо четко понимать, когда разрешается снимать опалубку, продолжать работы и нагружать бетонную конструкцию.

Требования строительных норм

Как правило, частный застройщик начинает работы исходя из финансовых возможностей. Выбирается теплый период – ранняя осень, весна, лето. Но погода и температура окружающей среды меняется в течение года и редко соответствуют оптимальным условиям созревания бетона.

Отсюда предварительный вывод: нельзя однозначно ответить на вопрос, какое время должен простоять фундамент или другая конструкция после заливки. Ведь набор монолитом прочности ускоряется либо замедляется с изменением температуры воздуха.

Справка. Оптимальный период для бетонирования – ранняя или поздняя осень (в зависимости от региона проживания). Температура держится в районе 15—20 °С, влажность приближается к идеальной, солнце слабее нагревает поверхности либо скрывается за облаками.

В монолитном строительстве существует понятие распалубочной прочности – величины, достаточной для снятия защиты с бетона и продолжения работ. Вопрос регламентируется документом СП 70.13330.2012 (п. 5.4) и устаревшим СНиП 3.03.01–87 «Нагрузки и воздействия». Значение распалубочной прочности зависит от типа конструкции:

  • армированные ленточные и плитные фундаменты, отмостки, армопояса – 50% от марочной (проектной) прочности;
  • столбы, колоны и прочие вертикальные изделия – 0.2 МПа;
  • монолитные перекрытия, бетонные лестницы протяженностью до 6 м – 70%
  • то же, длиной свыше 6 метров – 80%.

Вывод второй: в частном домостроении, где обычно используются ленточные фундаменты и другие малоответственные конструкции, демонтаж опалубки производится по достижении 50% от прочностного потенциала бетона.

Опалубки несущих и ответственных конструкций разбираются по достижении 70—80% твердости монолита

Исключение – железобетонные лестничные пролеты, отливаемые по месту, которые требуется выдержать до 70%. Остается выяснить, за какое время монолит наберет половину либо 70% проектной твердости.

Через сколько дней снимать опалубку

Отвердевание бетона – это химическая реакция кристаллизации частиц цементного порошка после контакта с водой. Процесс протекает в 2 этапа:

  1. Первичное схватывание в оптимальных условиях занимает несколько часов. Бетонная смесь теряет подвижность и принимает форму, заданную опалубкой.
  2. Набор марочной прочности. Монолит застывает до 97—98% теоретической твердости, оставшиеся 2—3% могут добавляться в течение десятилетий (если благоприятствуют внешние условия).

Примечание. Этап схватывания можно приостановить или замедлить путем шевеления смеси. Данное свойство, именуемое тиксотропией, используется при транспортировке бетона автомобильными смесителями – «миксерами».

Любая химическая реакция укладывается в рамки закона Вант-Гоффа: при нагреве вещества на 10 градусов процесс ускоряется в 2—4 раза. И наоборот, охлаждение замедляет реакцию аналогичным образом. То есть, время застывания бетона в опалубке для набора 50% прочности сильно зависит от окружающей температуры.

При нормальных условиях (t = +20 °C) бетонная смесь, сделанная из распространенных марок портландцемента М400 и М500, достигает распалубочной прочности 50% за 3 суток, 75% — за неделю. Если температура воздуха отличается от оптимальной, время отвердевания увеличивается либо уменьшается. Длительность застывания при различных температурах представлена в таблице.

Внимание! Указанная в таблице температура окружающего воздуха – среднесуточная, а не максимальная. Красным цветом выделен минимальный порог распалубочной твердости для малоответственных конструкций, зеленым – бетонных перекрытий.

Пример пользования таблицей. С фундамента либо отмостки опалубку снимают через 5 дней, если среднесуточная температура не превышает 10 градусов. С перекрытия и лестницы, застывающей в аналогичных условиях, демонтируют щиты спустя 2 недели.

Большую роль в наборе прочности бетоном играет влажностный режим. Что происходит с открытым твердеющим монолитом в разгар лета:

  1. Солнце сильно прогревает поверхность бетона, испаряя влагу из толщи конструкции.
  2. Химическая реакция ускоряется, но отвердевание протекает неравномерно, особенно, в поверхностных слоях.
  3. Массив идет трещинами, верхняя часть крошится и рассыпается.

Чтобы исключить разрушительные процессы, проявляющиеся в жаркий период, бетонную поверхность следует обильно увлажнять из распылителей, а затем укрывать мешковиной и другими подобными материалами, не пропускающими солнечные лучи. Когда ткань и поверхность просохнет, ее опять нужно увлажнить.

Переохлаждение застывающего бетона ночными морозами столь же губительно. Предлагаем ознакомиться с отдельной инструкцией, как правильно делать бетонирование зимой.

Как ускорить застывание бетона

Вопрос актуален для частных застройщиков, ведущих работы осенью, когда средняя температура опускается до нуля, сроки выполнения сильно сжаты. На практике применяется несколько методов ускорения отвердевания монолитов:

  1. Утепление и подогрев.
  2. Добавление суперпластификаторов.
  3. Использование химических присадок и добавок.
  4. Приготовление смеси на специальном быстротвердеющем цементе.

Примечание. Химические добавки выполняют 2 функции: ускоряют кристаллизацию цемента и защищают бетон от воздействия отрицательной температуры, не давая воде замерзнуть.

Последний вариант считается дорогостоящим и недоступным для рядовых домовладельцев – быстротвердеющие марки цементов найти непросто. Добавление химических присадок более уместно при зимнем бетонировании.

Изоляция и электрический подогрев способствуют улучшению теплового и влажностного режима бетона

Самый простой и доступный способ — приготовить смесь на горячей воде, залить в форму и тщательно утеплить. Чтобы реакция не замедлялась, можно организовать внутренний подогрев массива резистивным электрическим кабелем.

Другой вариант – укрытие застывающего монолита пленкой и подогрев с помощью тепловой пушки. Судите сами: если удастся нагреть бетон до +30 °С, то снять опалубку можно на сутки раньше (смотри таблицу выше). Главное, не забывать об увлажнении.

Добавление пластификаторов ускоряет отвердевание за счет снижения объема воды, используемого для затворения бетонной смеси. Недорогие химикаты позволяют уменьшить количество воды на 15—20%, благодаря чему застывание происходит гораздо быстрее. Подробнее о способах ускорения смотрите на видео:

Ведение распалубочных работ

Поскольку на момент снятия опалубки монолит успевает набрать примерно половину проектной твердости, выполняйте демонтаж с соблюдением мер предосторожности:

  1. Работы производите в порядке, обратном устройству опалубки.
  2. Разборку начинайте с углов, где смесь отвердевает быстрее.
  3. Отделяя первый щит, удостоверьтесь, что бетон застыл и не собирается рассыпаться.
  4. Работайте вручную, не применяя тяжелых инструментов и механизмов.
  5. Приставшие щиты аккуратно отделяются с помощью деревянных клиньев, забиваемых между конструкцией и опалубкой.
  6. Не бейте по опорным элементам и деревянным ограждениям.

Вначале опалубочные щиты отделяются по углам

Совет. При образовании трещин немедленно прекратите демонтаж и обождите 1—2 суток, спешить здесь нельзя. Если бетон фундамента не затвердеет, придется обращаться к специалистам и проверять прочность неразрушающими методами.

Нередко застройщики бетонируют основание осенью, давая фундаменту выстояться до весны. Оставлять опалубку на зиму неразумно – древесина быстро испортится, металл – заржавеет. Выдержите 14—28 дней и снимите щиты, вдобавок появится возможность сделать обмазочную гидроизоляцию.

Заключение

Частному домостроителю не стоит спешить в вопросах бетонирования. Цена ошибки – повторная заливка фундамента – слишком высока. Второй нюанс – потеря драгоценного времени. Поэтому начинайте разборку опалубки с небольшой задержкой 1—2 суток с момента достижения бетоном 50-процентной прочности.

Источник: https://qustu.com/cherez-kakoe-vremja-posle-zalii-betona-snimaetsja-opalubka/

Когда можно снимать опалубку – правила расчета срока

Быстро построить здание или сооружение – желание многих застройщиков. И если скорость монтажа готовых стройматериалов можно увеличить, то процессы, связанные с бетонированием, ускорить невозможно. Поэтому вопросы, когда снимать опалубку после заливки бетона летом, весной или осенью, когда нагружать бетонную конструкцию, звучат сегодня часто.

Особенно от частных застройщиков, которые некоторые строительные операции проводят своими руками. Бетон – не глина, разбавленная водой, в которой последняя выполняет функции разбавителя. В бетоне вода – это реагент, который является катализатором химической реакции.

Созревание бетона

Срок распалубки бетонной конструкции зависит от многих факторов, где в первую очередь надо выделить количество воды, вносимой в бетонный раствор, марку цемента, температуру окружающего воздуха. Все дело в том, что цемент состоит из нескольких химических веществ, которые при взаимодействии с водой начинают вступать в химическую реакцию.

Источник: https://betonzavod-info.com/snyatie-opalubki-posle-betonirovaniya-snip/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.